PMT

Biology BY4

1	(a)	(i)	х	ATP		
			Y	ADP	1 mark for both	(1)
		(ii)	Ac	tive transport; Nerve impulse;		
			Mu	scle contraction; Light independent stage of	p/s;	
			Gly	/colysis;		
			Pro	otein synthesis / cell division;		(Any 2)
		(iii)	AT	P synthetase / ATPase		(1)
	(b)	(i)	Ele	ectron transport (chain)		(1)
		(ii)	А	Proton pumps		(1)
			В	stalked particle / ATP synthetase / ATP as	e	(1)
		(iii)	Hig	gh energy electrons/eq;		
			Fu	el (eq) the proton pumps;		
			Wh	nich pumps protons into the inter-membrane	space;	
			Thi	is creates an electrochemical gradient/eq;		
			Wh	nich causes H^{+} to flow through a stalked part	icle;	
			Sy	nthesising ATP;		
			Со	rrect reference to chemiosmosis;		
				Any 4 but in THE CORREC	T SEQUENCE	(4)

Total: 11 MARKS

2	(a)	1	Obligate aerobes;		(1)
			at the top of the test tube in order to absorb m	naximal oxygen/eq;	(1)
		2	Obligate anaerobes;		(1)
			gather at the bottom to avoid oxygen/eq.		(1)
		3	Facultative anaerobes;		(1)
			gather mostly at the top, since aerobic respira	ition is the most	
			beneficial/but as lack of oxygen does not inhil	oit them, they can	
			be found all along the test tubes.		(1)
	(b)	C. pe	erfringens is an obligate anaerobe;		
		More/high pressure oxygen (is forced) into the wound;			
		C. perfringens/bacteria cannot metabolise / is inhibited in the presence			
	of O ₂ ; (not: respire)				
		Bacte	eria stop dividing / producing toxin;		
		Allows antibiotics/immune system time to destroy bacteria.			
(c)		Suita	ble temperature (not heat);		
		Suitable pH;			
		Carbon source/glucose*;			
		Nitrogen source/eq*;			
		Vitan	nins*;		
		Mine	ral salts*;		(1)
		[or n	utrients instead of *]		
		Wate	er;	Any 3 for 1 mark	

Total: 9 MARKS

PMT

(a)	Ribosomes are not involved in respiration/eq;	(1)
	Mitochondria cannot metabolise glucose/have no enzymes for glucose breakdown / have no carrier for glucose in the membrane; Pyruvate is broken down in the/Link reaction/Krebs cycle producing CO ₂ ; No lactate with either substrate as mitochondria are not involved in	
	anaerobic respiration;	(Any 2)
	<u>CR</u> breaks down glucose anaerobically to lactate; Enzymes for pyruvate breakdown are in mitochondria/Link or Krebs occurs in mitochondrial matrix; Cytoplamic residue cannot metabolise pyruvate (No source of reduced NAD)	(Any 2)
(b)	Cyanide must stop Krebs cycle/Link reaction (since no CO ₂ is produced); Non <u>competitive</u> inhibitor; Of the ETC/(last) proton pump; Cyanide is a respiratory <u>inhibitor</u> / <u>inhibits</u> respiration;	(Any 2)

3

Total: 7 MARKS

4 (a) Ultrafiltration;

High hydrostatic pressure/high pressure in glomerular capillary/glomerulus; Forces <u>small</u> molecules through the capillary (walls) into capsule; through basement /dialysing membrane; (Any 3)

- (b) (i) podocytes, (1)
 - (ii) Capillary shows pores/fenestrations/small gaps; (1)
- (c) (i) Selective reabsorption
 - (ii)

Molecule	Facilitated Diffusion	Active Transport	Osmosis
Glucose	~	(✓)	
Amino Acids	~	(✓)	
Water			~
Sodium lons		\checkmark	

Transport mechanism

One mark per column

(3)

(1)

 (d) Short length (in fresh water mammals) Because water is readily available so low Ψ not needed; (1) Medium length (in terrestrial mammals) Water reasonably available; (1) Long length (in desert mammals) Water needs to be conserved so medulla with low Ψ required; (1)
 (e) ADH is not being secreted; Collecting duct cells are not responsive to ADH;

So reduced water uptake into the medulla;	(Any 1)
Collecting duct cells less permeable.	

Total: 13 MARKS

PMT

5	(a)	Decay/putrefaction/decomposition/ammonification;	(1)
	(b)	Nitrosomonas/nitrococcus	(1)
		Nitrobacter	(1)
	(c)	Denitrification	(1)
		Anaerobic/eq	(1)
	(d)	(i) Rhizobium	(1)
		(ii) Hb <u>absorbs</u> /has an <u>affinity</u> for O ₂	(1)
	(e)	Respiration would demand high use of O ₂ ;	
		O ₂ is the final electron acceptor in the ETC;	
		(And so rapidly) converts O ₂ to water	(Any 2)
	(f)	Waterlogged soil/bogs are anaerobic;	
		Have low nitrate content/denitrification occurring;	
		Insect's <u>protein</u> is digested;	
		Releasing amino acids/ammonium ions;	
		Which can be used for plant protein/nucleic acid synthesis;	(Any 2)
		(not: nitrates or growth)	

Total: 11 MARKS

6 (a) Sunlight/Red light is absorbed during daylight;

Pr/ P660 is converted to Pfr/ P730; Pfr is active and inhibits flowering (in short day plants); In Exp1 lots of light/high Pfr so no flowering (inhibited); In Exp2 not enough Pfr/low Pfr (no inhibition) so flowering; In Exp3 the Pr is (rapidly) converted back to Pfr; so inhibition of flowering; (Any 3) (allow: converse points)

- (b) Short day plant (1)
- Allows plant breeders to cross pollinate flowers which would not usually flower at the <u>same time</u> Preparation of flowering plants for known <u>dates</u> – Christmas/Easter/ Mothers' Day/eq

Total: 5 MARKS

7 (a) Large/intense/dark spot of G3P indicating a lot has been synthesised;
 First product after ¹⁴CO₂ added is G3P;
 Smaller quantity of sugar phosphates produced later; (Any 2)
 (b) More sugar phosphates produced;

More triose phosphate produced; Presence of amino acids indicate other compounds being synthesised; Presence of citric acid; Any comment on Krebs cycle intermediates being used to synthesise amino acids; (Any 3) Sucrose present.

(c)	Presence of nucleic acids/ATP/ADP/eq.;		
	Starch;		
	Proteins;		
	Lipids/glycerol/fatty acids;		(Any 2)
	Cellulose.		
	(not: RUBP/ glucose/fructose/ethanol)		
(d)	Reduced NAD <u>P</u> /NAD <u>P</u> H/NAD <u>P</u> H ₂		
	ATP	1 mark for both	(1)
(e)	Cyclic		
	Light absorbed/harvested by PS 1/P700;		
	High energy electrons used to fuel proton pump;		
	Creating EC gradient/eq.;		
	Allowing ATP synthesis/ATP as a product;		
	Electrons return to PS1/P700/same PS (I);		(Any 2)
	Non Cyclic		
	Light harvested/absorbed by both PS;		
	High energy electrons passed to carriers;		
	Replaced in PS2/P680 by photolysis of water/eq.;		
	Electrons replaced in PS1/P700 from PS2/P680;		

Electrons from PS 1/P700 passed to NADP; Products are reduced NADP and ATP (A

(Any 4)

Total: 14 MARKS

8 (a) <u>Chemical control</u>

Advantages

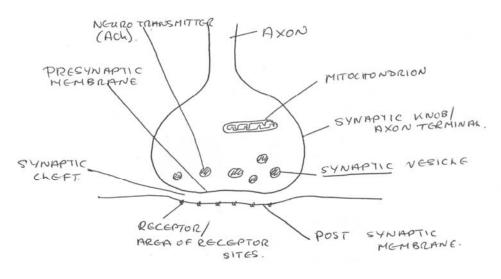
- A. Very effective/quick/cheap means of control
- B. Chemicals can be applied on a small area (e.g. Market gardening) /
 Application does not require a high level of skill/knowledge

Disadvantages

- C. Chemicals are not specific/may eradicate useful insects
- D. Resistance may occur (not: immunity)
- E. Killing of fish/birds/mammals/bioaccumulation;
- F. Risk to human health/contamination of rivers.

Biological control

Advantages


- G. Highly specific to one pest
- H. Long term control if predator: prey balance / Use in glasshouses
- I. May be inexpensive in long term
- J. No environmental contamination

Disadvantages

- K. Slow build up/have to accept some damage to crop/'not perfect'/pest not totally eradicated;
- L. Few successful examples
- M. Skill and research is expensive/detailed life cycle knowledge is needed
- N. Frequent input of predator needed / may only be of use in closed systems (greenhouses)
- O. Predator may become a pest itself/suitable e.g. (cane toads/hedgehogs on Uist)

Any 10 from the 15 marks available

(b) A. Decent drawing of a synapse.

/Na channels

- B.C.D. With 6 labels (2 correct labels per mark)
- E. When action potential arrives at axon terminal Ca²⁺ moves into synaptic knob
- F. Synaptic vesicles fuse with presynaptic membrane
- G. Neurotransmitter/Ach/eq released by exocytosis
- H. <u>Diffuses</u> over synaptic cleft
- I. ACh binds to receptors on post synaptic membrane
- J. Causing the protein channels to open/Na gates open
- K. Na⁺ flows in through channels
- L. So depolarising the post synaptic membrane
- M. With sufficient depolarisation, an impulse/action potential is generated in the post synaptic neurone
- N. Some comment on the breakdown of ACh by (A)Ch-esterase
- Diffusion back into axon terminal through presynaptic membrane/Use of ATP for <u>re-synthesis and packaging</u>

Any 10 from the 15 marks available